An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three

نویسندگان

  • Alan M. Frieze
  • Simi Haber
چکیده

We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph G = Gδ≥3 n,m. In this model G is drawn uniformly from graphs with vertex set [n], m edges and minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently large then our algorithm runs in O(n) time and succeeds w.h.p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a greedy 2-matching algorithm and Hamilton cycles in random graphs with minimum degree at least three

We describe and analyse a simple greedy algorithm 2greedy that finds a good 2-matching M in the random graph G = G n,cn when c ≥ 10. A 2-matching is a spanning subgraph of maximum degree two and G is drawn uniformly from graphs with vertex set [n], cn edges and minimum degree at least three. By good we mean that M has O(log n) components. We then use this 2-matching to build a Hamilton cycle in...

متن کامل

On a Simple Randomized Algorithm for Finding Long Cycles in Sparse Graphs

We analyze the performance of a simple randomized algorithm for finding long cycles and 2-factors in directed Hamiltonian graphs of out-degree at most two and in undirected Hamiltonian graphs of degree at most three. For the directed case, the algorithm finds a 2-factor in O(n) expected time. The analysis of our algorithm is based on random walks on a line and interestingly resembles the analys...

متن کامل

On the Number of Hamilton Cycles in Sparse Random Graphs

We prove that the number of Hamilton cycles in the random graph G(n, p) is n!p(1 + o(1)) a.a.s., provided that p ≥ ln n+ln ln n+ω(1) n . Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process, the edge that creates a graph of minimum degree 2 creates ( ln n e )n (1+o(1)) Hamilton cycles a.a.s.

متن کامل

On a simple randomized algorithm for finding a 2-factor in sparse graphs

We analyze the performance of a simple randomized algorithm for finding 2-factors in directed Hamiltonian graphs of out-degree at most two and in undirected Hamiltonian graphs of degree at most three. For the directed case, the algorithm finds a 2-factor in O(n) expected time. The analysis of our algorithm is based on random walks on the line and interestingly resembles the analysis of a random...

متن کامل

Powers of Hamilton Cycles in Pseudorandom Graphs

We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph G is (ε, p, k, l)-pseudorandom if for all disjoint X and Y ⊆ V (G) with |X| ≥ εpkn and |Y | ≥ εpln we have e(X,Y ) = (1± ε)p|X||Y |. We prove that for all β > 0 there is an ε > 0 such that an (ε, p, 1, 2)-pseudorandom graph on n vertices with minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2015